

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	ArgParse package for the Julia language 0.3-dev documentation

ArgParse — Module for command-line argument parsing

This module allows the creation of user-friendly command-line interfaces to Julia programs:
the program defines which arguments, options and sub-commands it accepts, and the ArgParse module
does the actual parsing, issues errors when the input is invalid, and automatically generates help
and usage messages.

Users familiar with Python’s argparse module will find many similarities, but some important differences
as well.

Quick overview and a simple example

First of all, the module needs to be loaded and imported:

using ArgParse

Note that in the second line we imported all names in the current namespace; this should be completely safe in most cases.

There are two main steps for defining a command-line interface: creating an ArgParseSettings object, and
populating it with allowed arguments and options using either the macro @add_arg_table or the function add_arg_table
(see this section for the difference between the two):

s = ArgParseSettings()
@add_arg_table s begin
 "--opt1"
 help = "an option with an argument"
 "--opt2", "-o"
 help = "another option with an argument"
 arg_type = Int
 default = 0
 "--flag1"
 help = "an option without argument, i.e. a flag"
 action = :store_true
 "arg1"
 help = "a positional argument"
 required = true
end

In the macro, options and positional arguments are specified within a begin...end block, by one or more names
in a line, optionally followed by a list of settings.
So, in the above example, there are three options:

	the first one, "--opt1" takes an argument, but doesn’t check for its type, and it doesn’t have a default value

	the second one can be invoked in two different forms ("--opt2" and "-o"); it also takes an argument, but
it must be of Int type (or convertible to it) and its default value is 0

	the third one, --flag1, is a flag, i.e. it doesn’t take any argument.

There is also only one positional argument, "arg1", which is declared mandatory.

When the settings are in place, the actual argument parsing is performed via the parse_args function:

parsed_args = parse_args(ARGS, s)

The parameter ARGS can be omitted. In case no errors are found, the result will be a Dict{String,Any} object.
In the above example, it will contain the keys "opt1", "opt2", "flag1" and "arg1", so that e.g.
parsed_args["arg1"] will yield the value associated with the positional argument.

Putting all this together in a file, we can see how a basic command-line interface is created:

require("argparse")
using ArgParse

function parse_commandline()
 s = ArgParseSettings()

 @add_arg_table s begin
 "--opt1"
 help = "an option with an argument"
 "--opt2", "-o"
 help = "another option with an argument"
 arg_type = Int
 default = 0
 "--flag1"
 help = "an option without argument, i.e. a flag"
 action = :store_true
 "arg1"
 help = "a positional argument"
 required = true
 end

 return parse_args(s)
end

function main()
 parsed_args = parse_commandline()
 println("Parsed args:")
 for pa in parsed_args
 println(" $(pa[1]) => $(pa[2])")
 end
end

main()

If we save this as a file called myprog1.jl, we can see how a --help option is added by default,
and a help message is automatically generated and formatted:

$ julia myprog1.jl --help
usage: myprog1.jl [--opt1 OPT1] [-o OPT2] [--flag1] [-h] arg1

positional arguments:
 arg1 a positional argument

optional arguments:
 --opt1 OPT1 an option with an argument
 -o, --opt2 OPT2 another option with an argument (type: Int64,
 default: 0)
 --flag1 an option without argument, i.e. a flag
 -h, --help show this help message and exit

Also, we can see how invoking it with the wrong arguments produces errors:

$ julia myprog1.jl
required argument arg1 was not provided
usage: myprog1.jl [--opt1 OPT1] [-o OPT2] [--flag1] [-h] arg1

$ julia myprog1.jl somearg anotherarg
too many arguments
usage: myprog1.jl [--opt1 OPT1] [-o OPT2] [--flag1] [-h] arg1

$ julia myprog1.jl --opt2 1.5 somearg
invalid argument: 1.5 (must be of type Int64)
usage: myprog1.jl [--opt1 OPT1] [-o OPT2] [--flag1] [-h] arg1

When everything goes fine instead, our program will print the resulting Dict:

$ julia myprog1.jl somearg
Parsed args:
 arg1 => somearg
 opt2 => 0
 opt1 => nothing
 flag1 => false

$ julia myprog1.jl --opt1 "2+2" --opt2 "2+2" somearg --flag
Parsed args:
 arg1 => somearg
 opt2 => 4
 opt1 => 2+2
 flag1 => true

From these examples, a number of things can be noticed:

	opt1 defaults to nothing, since no default setting was used for it in @add_arg_table

	opt1 argument type, begin unspecified, defaults to Any, but in practice it’s parsed as a
string (e.g. "2+2")

	opt2 instead has Int argument type, so "2+2" will be parsed as an expression and converted
to an integer

	positional arguments can be passed in between options

	long options can be passed in abbreviated form (e.g. --flag instead of --flag1) as long as
there’s no ambiguity

The parse_args function

	
parse_args([args], settings)

	This is the central function of the ArgParse module. It takes a Vector of arguments and an ArgParseSettings
objects (see this section), and returns a Dict{String,Any}.
If args is not provided, the global variable ARGS will be used.

The returned Dict keys are defined (possibly implicitly) in settings, and their associated values are parsed
from args. Special keys are used for more advanced purposes; at the moment, one such key exists: %COMMAND%
(see this section).

Arguments are parsed in sequence and matched against the argument table in settings to determine whether they are
long options, short options, option arguments or positional arguments:

	long options begin with a doule dash "--"; if a '=' character is found, the remainder is the option argument;
therefore, ["--opt=arg"] and ["--opt", "arg"] are equivalent if --opt takes at least one argument.
Long options can be abbreviated (e.g. --opt instead of --option) as long as there is no ambiguity.

	short options begin with a single dash "-" and their name consists of a single character; they can be grouped
togheter (e.g. ["-x", "-y"] can become ["-xy"]), but in that case only the last option in the group can
take an argument (which can also be grouped, e.g. ["-a", "-f", "file.txt"] can be passed as
["-affile.txt"] if -a does not take an argument and -f does). The '=' character can be used to
separate option names from option arguments as well (e.g. -af=file.txt).

	positional arguments are anything else; they can appear anywhere.

The special string "--" can be used to signal the end of all options; after that, everything is considered as a
positional argument (e.g. if args = ["--opt1", "--", "--opt2"], the parser will recognize --opt1 as a long
option without argument, and --opt2 as a positional argument).

The special string "-" is always parsed as a positional argument.

The parsing can stop early if a :show_help or :show_version action is triggered, or if a parsing error is
found.

Some ambiguities can arise in parsing, see this section for a detailed description
of how they’re solved.

Settings overview

The ArgParseSettings object contains all the settings to be used during argument parsing. Settings are divided
in two groups: general settings and argument-table-related settings.
While the argument table requires specialized functions such as add_arg_table to be defined and manipulated,
general settings are simply object fields (most of them are Bool or String) and can be set directly at any
time.

General settings

This is the list of general settings currently available:

	prog (default = ""): the name of the program, as displayed in the auto-generated help and usage screens.
If left empty, the source file name will be used.

	description (default = ""): a description of what the program does, to be displayed in the auto-generated
help-screen, between the usage lines and the arguments description. It will be automatically formatted.

	epilog (default = ""): like description, but will be displayed at the end of the help-screen, after the
arguments description.

	usage (default = ""): the usage line(s) to be displayed in the help screen and when an error is found during parsing.
If left empty, it will be auto-generated.

	version (default = ""Unknown version"): version information. It’s used by the :show_version action.

	add_help (default = true): if true, a --help, -h option (triggering the :show_help action) is added
to the argument table.

	add_version (default = false): if true, a --version option (triggering the :show_version action) is added
to the argument table.

	error_on_conflict (default = true): if true, throw an error in case conflicting entries are added to the argument table;
if false, later entries will silently take precedence.
See this section for a detailed description of what conflicts are and what is the exact behavior
when this setting is false.

	suppress_warnings (default = false): is true, all warnings will be suppressed.

	allow_ambiguous_opts (default = false): if true, ambiguous options such as -1 will be accepted.

	commands_are_required (default = true): if true, commands will be mandatory. See this section
for more information on commands.

	exc_handler: this is a function which is invoked when an error is detected during parsing (e.g. an option is not
recognized, a required argument is not passed etc.). It takes two arguments: the settings::ArgParseSettings object and the
err::ArgParseError exception. The default handler prints the error text and the usage screen on standard error and exits.

Here is a usage example:

settings = ArgParseSettings()
settings.prog = "myprogram"
settings.description = "This program does something."
settings.add_version = true
settings.allow_ambiguous_opts = true

As a shorthand for most common settings, the ArgParseSettings contructor accepts two optional fields, description and
add_help.

Most settings won’t take effect until parse_args is invoked, but a few will have immediate effects: error_on_conflict,
suppress_warnings, allow_ambiguous_opts.

Argument table basics

The argument table is used to store allowed arguments and options in an ArgParseSettings object. There are two very similar
methods to populate it:

	
@add_arg_table(settings, table...)

	This macro adds a table of arguments and options to the given settings. It can be invoked multiple times. The arguments groups
are determined automatically, or the current default group is used if specified (see this section for
more details).

The table is a list in which each element can be either String, or a tuple or a vector of String, or an assigmment
expression, or a block:

	a String, a tuple or a vector introduces a new positional argument or option. Tuples and vectors are only allowed for options and
provide alternative names (e.g. ["--opt", "-o"])

	assignment expressions (i.e. expressions using =, := or =>) describe the previous argument behavior (e.g.
help = "an option" or required => false). See this section for a complete description

	blocks (begin...end or lists of expressions in parentheses separated by semicolons) are useful to group entries and span
multiple lines.

These rules allow for a variety usage styles, which are discussed in this section.
In the rest of this document, we will mostly use this style:

@add_arg_table settings begin
 "--opt1", "-o"
 help = "an option with an argument"
 "--opt2"
 "arg1"
 help = "a positional argument"
 required = true
end

In the above example, the table is put in a single begin...end block and the line "-opt1", "-o" is parsed as a tuple;
indentation is used to help readability.

	
add_arg_table(settings, [arg_name [,arg_options]]...)

	This function is almost equivalent to the macro version. Its syntax is stricter (tuples and blocks are not allowed and argument options
are explicitly specified as Options objects) but the arg_name entries need not be explicit, they can be anything which evaluates
to a String or a Vector{String}.

Example:

add_arg_table(settings,
 ["--opt1", "-o"],
 @options begin
 help = "an option with an argument"
 end,
 "--opt2",
 "arg1",
 @options begin
 help = "a positional argument"
 required = true
 end)

Note that the OptionsMod module (provided by the Options package <https://github.com/JuliaLang/Options.jl>) must be imported
in order to use this function.

Argument table entries

Argument table entries consist of an argument name and a list of argument settings, e.g.:

"--verbose"
 help = "verbose output"
 action = :store_true

Argument names

Argument names are strings or, in the case of options, lists of strings. An argument is an option if it begins with a '-'
character, otherwise it’a positional argument. A single '-' introduces a short option, which must consist of a single
character; long options begin with "--" instead.

Positional argument names can be any string, except all-uppercase strings between '%' characters, which are reserved
(e.g. "%COMMAND%").
Option names can contain any character except '=', whitespaces and non-breakable spaces.
Depending on the value of the add_help and add_version settings, options --help, -h and --version may
be reserved.
If the allow_ambiguous_opts setting is false, some characters are not allowed as short options: all digits, the dot,
the underscore and the opening parethesis (e.g. -1, -., -_, -().

For positional arguments, the argument name will be used as the key in the Dict object returned by the parse_args function.
For options, it will be used to produce a default key in case a dest_name is not explicitly specified in the table entry, using
either the first long option name in the list or the first short option name if no long options are present. For example:

	argument name
	default dest_name

	"--long"
	"long"

	"--long", "-s"
	"long"

	"-s", "--long1", "--long2"
	"long1"

	"-s", "-x"
	"s"

The argument name is also used to generate a default metavar in case metavar is not explicitly set in the table entry. The rules
are the same used to determine the default dest_name, but for options the result will be uppercased (e.g. "--long" will
become LONG). Note that this poses additional constraints on the positional argument names (e.g. whitespaces are not allowed in
metavars).

Argument entry settings

Argument entry settings determine all aspects of an argument’s behavior. Some settings combinations are contradictory and will produce
an error (e.g. using both action = :store_true and nargs = 1, or using action = :store_true with a positional argument).
Also, some settings are only meaningful under some conditions (e.g. passing a metavar to a flag-like option does not make sense)
and will be ignored with a warning (unless the suppress_warnings general setting is true).

This is the list of all available settings:

	nargs (default = 'A'): the number of extra command-line tokens parsed with the entry. See
this section for a complete desctiption.

	action: the action performed when the argument is parsed. It can be passed as a String or as a Symbol (e.g. both
:store_arg and "store_arg" are accepted). The default action is :store_arg unless nargs is 0, in which case the
default is :store_true. See this section for a list of all available actions and a detailed
explanation.

	arg_type (default = Any): the type of the argument. Makes only sense with non-flag arguments.

	default (default = nothing): the default value if the option or positional argument is not parsed. Makes only sense with
non-flag arguments, or when the action is :store_const or :append_const. Unless it’s nothing, it must be coherent with
arg_type and range_tester.

	constant (default = nothing): this value is used by the :store_const and :append_const actions, or when nargs = '?'
and the option argument is not provided.

	required (default = false): determines if a positional argument is required (this setting is ignored by options, which are always
optional).

	range_tester (default = x->true): a function returning a Bool value which tests whether an argument is allowed (e.g.
you could use arg_type = Integer and range_tester = isodd to allow only odd integer values)

	dest_name (default = auto-generated): the key which will be associated with the argument in the Dict object returned by
parse_args. The auto-generation rules are explained in this section. Multiple arguments can share
the same destination, provided their actions and types are compatible.

	help (default = ""): the help string which will be shown in the auto-generated help screen. It’s a String which will
be automaticaly formatted; also, arg_type and default will be automatically appended to it if provided.

	metavar (default = auto-generated): a token which will be used in usage and help screens to describe the argument syntax. For
positional arguments, it will also be used as an identifier in all other messages (e.g. in reporting errors), therefore it must
be unique. The auto-generations rules are explained in this section.

	force_override: if true, conflicts are ignored when adding this entry in the argument table (see also this section). By default,
it follows the general error_on_conflict settings).

	group: the option group to which the argument will be assigned to (see this section). By default, the
current default group is used if specified, otherwise the assignment is automatic.

Available actions and nargs values

The nargs and action argument entry settings are used together to determine how many tokens will be parsed from the command
line and what action will be performed on them.

The nargs setting can be a number or a character; the possible values are:

	'A': automatic, i.e. inferred from the action (this is the default). In practice, it means 0 for flag-like options and 1
for non-flag-like options (but it’s different from using an explicit 1 because the result is not stored in a Vector).

	0: this is the only option (besides 'A') for flag-like actions (see below), and it means no extra tokens will be parsed from
the command line. If action is not specified, setting nargs to 0 will make action default to :store_true.

	a positive integer number N: exactly N tokens will be parsed from the command-line, and the result stored into a Vector
of length N (even for N=1).

	'?': optional, i.e. a token will only be parsed if it does not look like an option (see this section
for a discussion of how exactly this is established), otherwise the constant argument entry setting will be used instead.
This only makes sense with options.

	'*': any number, i.e. all subsequent tokens which do not look like an option are stored into a Vector.

	'+': like '*', but at least one token is required.

	'R': all remainder tokens, i.e. like '*' but it does not stop at options.

Actions can be categorized in many ways; one prominent distinction is flag vs. non-flag: some actions are for options which take no
argument (i.e. flags), all others (except command, which is special) are for other options and positional arguments:

	flag actions are only compatible with nargs = 0 or nargs = 'A'

	non-flag actions are not compatible with nargs = 0.

This is the list of all available actions (in each examples, suppose we defined settings = ArgParseSettings()):

	store_arg (non-flag): store the argument. This is the default unless nargs is 0. Example:

julia> @add_arg_table(settings, "arg", action => :store_arg);

julia> parse_args(["x"], settings)
{"arg"=>"x"}

The result is a vector if nargs is a non-zero number, or one of '*', '+', 'R':

julia> @add_arg_table(settings, "arg", action => :store_arg, nargs => 2);

julia> parse_args(["x", "y"], settings)
{"arg"=>{"x", "y"}}

	store_true (flag): store true if given, otherwise false. Example:

julia> @add_arg_table(settings, "-v", action => :store_true);

julia> parse_args([], settings)
{"v"=>false}

julia> parse_args(["-v"], settings)
{"v"=>true}

	store_false (flag): store false if given, otherwise true. Example:

julia> @add_arg_table(settings, "-v", action => :store_false);

julia> parse_args([], settings)
{"v"=>true}

julia> parse_args(["-v"], settings)
{"v"=>false}

	store_const (flag): store the value passed as constant in the entry settings if given, otherwise default.
Example:

julia> @add_arg_table(settings, "-v", action => :store_const, constant => 1, default => 0);

julia> parse_args([], settings)
{"v"=>0}

julia> parse_args(["-v"], settings)
{"v"=>1}

	append_arg (non-flag): append the argument to the result. Example:

julia> @add_arg_table(settings, "-x", action => :append_arg);

julia> parse_args(["-x", "1", "-x", "2"], settings)
{"x"=>{"1", "2"}}

The result will be a Vector{Vector} if nargs is a non-zero number, or one of '*', '+', 'R':

julia> @add_arg_table(settings, "-x", action => :append_arg, nargs => '*');

julia> parse_args(["-x", "1", "2", "-x", "3"], settings)
{"x"=>{{"1", "2"}, {"3"}}

	append_const (flag): append the value passed as constant in the entry settings. Example:

julia> @add_arg_table(settings, "-x", action => :append_const, constant => 1);

julia> parse_args(["-x", "-x", "-x"], settings)
{"x"=>{1, 1, 1}}

	count_invocations (flag): increase a counter; the final result will be the number of times the option was
invoked. Example:

julia> @add_arg_table(settings, "-x", action => :count_invocations);

julia> parse_args(["-x", "-x", "-x"], settings)
{"x"=>3}

	show_help (flag): show the help screen and exit. This is useful if the add_help general setting is
false. Example:

julia> settings.add_help = false;

julia> @add_arg_table(settings, "-x", action => :show_help);

julia> parse_args(["-x"], settings)
usage: <command> [-x]

optional arguments:
 -x

	show_version (flag): show the version information and exit. This is useful if the add_version general
setting is false. Example:

julia> settings.version = "1.0";

julia> @add_arg_table(settings, "-x", action => :show_version);

julia> parse_args(["-v"], settings)
1.0

	command (special): the argument or option is a command, i.e. it starts a sub-parsing session (see this section)

Commands

Commands are a special kind of arguments which introduce sub-parsing sessions as soon as they are encountered by parse_args
(and are therefore mutually exclusive).
The ArgParse module allows commands to look both as positional arguments or as flags, with minor differences between the two.

Commands are introduced by the action = :command setting in the argument table. Suppose we save the following script in
a file called cmd_example.jl:

require("argparse")
using ArgParse

function parse_commandline()
 s = ArgParseSettings("cmd_example.jl")

 @add_arg_table s begin
 "cmd1"
 help = "first command"
 action = :command
 "cmd2"
 help = "second command"
 action = :command
 end

 return parse_args(s)
end

parsed_args = parse_commandline()
println(parsed_args)

Invoking the script from the command line, we would get the following help screen:

$ julia cmd_example.jl --help
usage: cmd_example.jl [-h] {cmd1|cmd2}

commands:
 cmd1 first command
 cmd2 second command

optional arguments:
 -h, --help show this help message and exit

If commands are present in the argument table, parse_args will set the special key "%COMMAND%" in the returned Dict and
fill it with the invoked command (or nothing if no command was given):

$ julia cmd_example.jl cmd1
{"%COMMAND%"=>"cmd1", "cmd1"=>{}}

Since commands introduce sub-parsing sessions, an additional key will be added for the called command ("cmd1" in this case) whose
associated value is another Dict{String, Any} containing the result of the sub-parsing (in the above case it’s empty). In fact,
with the default settings, commands have their own help screens:

$ julia cmd_example.jl cmd1 --help
usage: cmd_example.jl cmd1 [-h]

optional arguments:
 -h, --help show this help message and exit

The argument settings and tables for commands can be accessed by using a dict-like notation, i.e. settings["cmd1"] is an
ArgParseSettings object specific to the "cmd1" command. Therefore, to populate a command sub-argument-table, simply
use @add_arg_table(settings["cmd1"], table...) and similar.

These sub-settings are created when a command is added to the argument table, and by default they inherit their parent general
settings except for the prog setting (which is auto-generated, as can be seen in the above example) and the
description, epilog and usage settings (which are left empty).

Commands can also have sub-commands.

By default, if commands exist, they are required; this can be avoided by setting the commands_are_required = false general setting.

The only meaningful settings for commands in an argument entry besides action are help, force_override, group and
(for flags only) dest_name.

The only differences between positional-arguments-like and flag-like commands are in the way they are parsed, the fact that flags
accept a dest_name setting, and that flags can have multiple names (e.g. a long and short form).

Note that short-form flag-like commands will be still be recognized in the middle of a short options group and trigger a sub-parsing
session: for example, if a flag -c is associated to a command, then -xch will parse option -x according to the parent
settings, and option -h according to the command sub-settings.

Argument groups

By default, the auto-generated help screen divides arguments into three groups: commands, positional arguments and optional
arguments, displayed in that order. Example:

julia> settings = ArgParseSettings();

julia> @add_arg_table settings begin
 "--opt"
 "arg"
 required = true
 "cmd1"
 action = :command
 "cmd2"
 action = :command
 end;

julia> parse_args(["--help"], settings)
usage: <command> [--opt OPT] [-h] arg {cmd1|cmd2}

commands:
 cmd1
 cmd2

positional arguments:
 arg

optional arguments:
 --opt OPT
 -h, --help show this help message and exit

It is possible to partition the arguments differently by defining and using customized argument groups.

	
add_arg_group(settings, description[, name[, set_as_default]])

	This function adds an argument group to the argument table in settings. The description is a String used in
the help screen as a title for that group. The name is a unique name which can be provided to refer to that group
at a later time.

After invoking this function, all subsequent invocations of the @add_arg_table macro and add_arg_table function
will use the new group as the default, unless set_as_default is set to false (the default is true, and the option
can only be set if providing a name). Therefore, the most obvious usage pattern is: for each group, add it and populate
the argument table of that group. Example:

julia> settings = ArgParseSettings();

julia> add_arg_group(settings, "custom group");

julia> @add_arg_table settings begin
 "--opt"
 "arg"
 end;

julia> parse_args(["--help"], settings)
usage: <command> [--opt OPT] [-h] [arg]

optional arguments:
 -h, --help show this help message and exit

custom group:
 --opt OPT
 arg

As seen from the example, new groups are always added at the end of existing ones.

The name can also be passed as a Symbol. Forbidden names are the standard groups names ("command",
"positional" and "optional") and those beginning with a hash character '#'.

	
set_default_arg_group(settings[, name])

	Set the default group for subsequent invocations of the @add_arg_table macro and add_arg_table function.
name is a String, and must be one of the standard group names ("command", "positional" or
"optional") or one of the user-defined names given in add_arg_group (groups with no assigned name cannot be
used with this function).

If name is not provided or is the empty string "", then the default behavior is reset (i.e. arguments will be
automatically assigned to the standard groups).
The name can also be passed as a Symbol.

Besides setting a default group with add_arg_group and set_default_group, it’s also possible to assign individual arguments
to a group by using the group setting in the argument table entry, which follows the same rules as set_default_group.

Note that if the add_help or add_version general settings are true, the --help, -h and --version options
will always be added to the optional group.

Importing settings

It may be useful in some cases to import an argument table into the one which is to be used, for example to create
specialized versions of a common interface.

	
import_settings(settings, other_settings[, args_only])

	Imports other_settings into settings, where both are ArgParseSettings objects. If args_only is
true (this is the default), only the argument table will be imported; otherwise, the default argument group
will also be imported, and all general settings except prog, description, epilog and usage.

Sub-settings associated with commands will also be imported recursively; the args_only setting applies to
those as well. If there are common commands, their sub-settings will be merged.

While importing, conflicts may arise: if settings.error_on_conflict is true, this will result in an error,
otherwise conflicts will be resolved in favor of other_settings (see this section
for a detailed discussion of how conflicts are handled).

Argument groups will also be imported; if two groups in settings and other_settings match, they are merged
(groups match either by name, or, if unnamed, by their description).

Note that the import will have effect immediately: any subsequent modification of other_settings will not have
any effect on settings.

This function can be used at any time.

Conflicts and overrides

Conflicts between arguments, be them options, positional arguments or commands, can arise for a variety of reasons:

	Two options have the same name (either long or short)

	Two arguments have the same destination key, but different types (e.g. one is Any and the other String)

	Two arguments have the same destination key, but incompatible actions (e.g. one does :store_arg and the other
:append_arg)

	Two positional arguments have the same metavar (and are therefore indistinguishable in the usage and help screens
and in error messages)

	An argument and a command, or two commands, have the same destination key.

When the general setting error_on_conflict is true, or any time the specific force_override table entry
setting is false, any of the above conditions leads to an error.

On the other hand, setting error_on_conflict to false, or force_override to true, will try to force
the resolution of most of the conflicts in favor of the newest added entry. The general rules are the following:

	In case of duplicate options, all conflicting forms of the older options are removed; if all forms of an
option are removed, the option is deleted entirely

	In case of duplicate destination key and incompatible types or actions, the older argument is deleted

	In case of duplicate positional arguments metavars, the older argument is deleted

	A command can override an argument with the same destination key

	However, an argument can never override a command if they have the same destination key; neither can
a command override another command when added with @add_arg_table (compatible commands are merged
by import_settings though)

Parsing details

During parsing, parse_args must determine whether an argument is an option, an option argument, a positional
argument, or a command. The general rules are explained in this section, but
ambiguities may arise under particular circumstances. In particular, negative numbers like -1 or -.1e5
may look like options. Under the default settings, such options are forbidden, and therefore those tokens are
always recognized as non-options. However, if the allow_ambiguous_opts general setting is true,